
Constructing Human-Automation Interfaces:

A Formal Approach
Michael Heymann

Department of Computer Science
Technion, Israel Inst itute of Technology

heymann@cs.technion.ac.il

Asaf Degani

Computational Sciences Division
NASA Ames Research Center, Cal ifornia

adegani@mail.arc.nasa.gov

Abstract
In this paper we present a formal methodology and an
algorithmic procedure for constructing human-auto-
mation interfaces and corresponding user-manuals.
Our focus is the information provided to the user about
the behavior of the underlying machine, rather than
the graphical and layout features of the interface itself.
Our approach involves a systematic reduction of the
behavioral model of the machine, as well as systematic
abstraction of information that displayed in the inter -
face. This reduction procedure satisfies two require-
ments: First, the interface must be correct so as not to
cause mode confusion that may lead the user to per -
form incorrect actions. Secondly, the interface must be
as simple as possible and not include any unnecessary
information. The algorithm for generating such inter -
faces can be automated, and a preliminary software
system for its implementation has been developed.

Introduction

In many of today’s automated systems, humans are still
responsible for monitoring the behavior of the system.
Aircraft pilots, medical technicians, and engineers are
among the many users who interact with automated con-
trol systems to achieve specified operational tasks
(Parasuraman et al 2000). These may include (1) moni-
toring a machine’s mode changes during an auto-land,
(2) executing specific sequences of actions for setting-
up a medical radiation machine, and (3) preventing a
system from reaching unsafe states.

Automated control systems such as autopilots and
flight management systems exhibit extremely complex
behaviors. These are large systems that react to external
events, internal events, as well as user-initiated events.
For the user to be able to monitor the machine and in-
teract with it to achieve a task, the information provided
to the user about the machine must, above all, be cor-
rect. In principle, correct interaction can always be
achieved by providing the user with the full detail of the
underlying machine behavior, but in reality the sheer
amount of such detail is generally impossible for the
user to absorb and comprehend. Therefore, the machine
interface and related user-manuals are always a re-
duced, or abstracted, description of the machine’s be-
havior. Naturally, we prefer interfaces that are simple
and straightforward. This reduces the size of user-

manuals, training costs, and perceptual and cognitive
burdens on the user.

In automated control systems such as autopilots and
other aircraft systems, the criteria for selecting the infor-
mation that must be provided to the user (as well as in-
formation that can be abstracted away), are currently
based only on engineering and human-factors judgments.
The decisions are then evaluated in a series of laboratory
tests, expensive simulations, and flight-tests. When errors
are detected, costly changes must be made, and the sys-
tem must be re-evaluated. Furthermore, the certification
process of proving that an interface design is safe and ef-
ficient places a heavy burden on manufacturers. For ex-
ample, the new regulation and FAA Advisory Circular on
Flight Guidance Systems requires that the applicant
prove that the system is devoid of confusing modes and
related human-automation problems (Federal Aviation
Regulation 25.1329).

Despite the best efforts of engineers and hundreds of
hours of tests and simulations, interface errors may go
undetected because simulation and tests can never fully
examine all the possible modes and state combinations.
The operational community is well aware of the conse-
quences of these errors: There are hundreds of narratives
in the Aviation Safety Reporting System (ASRS) data-
base describing incidents in which pilots find themselves
confused and unsure what the machine is doing (ASRS
1998, Vakil et al 1995). There are also several airline
accidents in which inadequate interfaces were cited as a
contributing factor (ICOI 1992, NTSB 1997). In a recent
fuel-starvation incident that resulted in a dead-stick ap-
proach and landing by a commercial jetliner at Lajes
Field, Azores Islands, there are preliminary indications
that the fuel system interface may have been overly
complex and misleading (Aviation Week 2001).

In a recent paper (Degani et al 2002), we presented
an approach and methodology for verifying interfaces and
user-manuals. The methodology evaluates whether the in-
terface and user-manual information are correct and free
of errors, given a description of the machine, the user’s
task, an interface, and a user-manual. The procedure can
be automated and used in the verification of complex
human-automation systems.

In this paper we take an additional step and discuss a
general approach for constructing correct and succinct in-
terfaces. The algorithm presented here is suited for auto-

HCI-Aero 2002 119

mated machines that can be described as a system of
states. To illustrate the approach and algorithm, we use
a simplified version of a transmission system in a road
vehicle. Efforts are currently under way to apply the
methodology to a portion of the flight management sys-
tem. A more detailed treatment of this topic can be
found in a recent NASA Technical Memorandum
(Heymann et al 2002).

Formal Aspects of
Human-Machine Interaction

In analyzing human automation interaction from a for-
mal perspective, we consider four major elements: (1)
the behavior of the machine (its modes and states), (2)
the operational tasks (knowing which mode the machine
is in), (3) the interface (the mode annunciations), and
(4) the user’s model of the machine’s behavior (the in-
formation in the Aircraft Operating Manual).

Machine
Our focus in this paper is on automated machines that
can be described as a system of states. A state repre-
sents a mode, or a configuration, of the machine. The
machine transitions from one mode to another. Some of
the transitions are triggered by the user; for example,
the pilot switches from Flight Level Change to Vertical
NAVigation mode. Other transitions are automatic and
are triggered either by the machine’s internal dynamics
(e.g., timed transitions – if there is no pilot response
within 30 seconds, then the machine switches automati-
cally to another mode), or by the external environment
(e.g., sensed transitions – if the outside temperature is
below 32 Fahrenheit, then the machines switches auto-
matically to another mode).

Figure 1. Transmission system.

In the models described here, we always depict user-
triggered transitions by solid arrows, while automatic
transitions are dashed. The transitions are labeled by
Greek symbols indicating the events under which the
machine moves from state to state.

The machine in Figure 1 describes a simplified three-
speed transmission system of a vehicle. The transmission
has eight states (representing internal torque-levels).
These are grouped into three speed modes: LOW,
MEDIUM, and HIGH. States L1, L2, L3 are in the LOW
speed mode; M1, M2 in the MEDIUM speed mode; and
H1, H2, H3 in HIGH.

The transmission shifts up and down either automati-
cally (based on throttle, engine, and speed values) or
manually (by pushing a lever). Manual up-shifts are de-
noted by event b and down-shifts by event r. Automatic
up-shifts are denoted by event d, and automatic down-
shifts by event g.

User’s Task
The second element of our framework is the user’s opera-
tional tasks, which in case of the transmission, consists
of tracking the three speed modes unambiguously. In
other words, the user must be able to determine the cur-
rent mode of the machine and predict the next mode of
the machine. This requirement is akin to the type of ques-
tions pilots usually ask about automated cockpit systems
such as autopilots and flight management systems:
“What’s it doing now?” “What’s it going to do next?”
and “Why is it doing that?” (Wiener 2002).

We can describe the user’s task by partitioning the
machine’s state-set (the 8 internal states in Figure 1) into
distinct clusters, or modes. In the transmission system
there are three such clusters: LOW, MEDIUM and HIGH.
Note, however, that the user is required to track only the
modes and not every individual state of the machine
(e.g., transitions between states M1 and M2 inside
MEDIUM).

Interface
The interface commonly consists of two components: (1)
a control panel through which the user enters commands
and, (2) a display through which the machine presents in-
formation to the user about the status of the machine. The
status display shows, for example, the active mode, the
armed modes, as well as the events that take place.

As discussed earlier, the interface generally provides
the user with a simplified view of the machine. In almost
any display, especially those for automated systems,
many of the machine’s internal events and states are hid-
den from the user: Otherwise, the size of cockpit dis-
plays, for example, would be colossal. Hence the display
provides only partial information about the underlying
behavior of the machine. The cardinal issue, therefore, is
which information can be safely removed or abstracted,
and which must not.

Figure 2 describes the control panel and one proposed
display for the transmission system, where the user ex-
pects to be switching among the modes (LOW, MEDIUM
and HIGH), by pushing up or down on the gear lever. Note
that in this display, all the internal states (e.g., L1, L2,
…to H3) are suppressed from view.

120 HCI-Aero 2002

Figure 2. Display and control panel.

User Model
Manufacturers normally provide users with information
about the working of the machine in the user-manual
(e.g., Aircraft Operation Manual, Flight Crew Opera-
tions Manual) that describe the behavior of autopilots.
Most verbal statements in the Aircraft Operational ex-
ample, have the following form: “when the autopilot is
in mode X and button ‘k’ is pushed, the autopilot en-
gages in mode Y.” Similarly, the user-manual for the
transmission system tells the driver that when the
transmission is in LOW mode, pushing the lever up (and
triggering event b) will cause the system to shift to
MEDIUM mode. When in MEDIUM mode, a shift up will
give HIGH, and so on. This series of fragmented state-
ments describe how to operate the machine. But again,
note that these statements are also a simplification of
the actual behavior of the machine; a lot of information
about the machine’s internal events has been omitted. If
this were not the case, the size (and weight) of operat-
ing manuals would be huge.

In practice, the user-manual is written based on the
display. This is naturally so because the operating man-
ual explains and constantly refers to the display. It is
therefore possible to combine the user-manual informa-
tion with the display to create a model, as shown in
Figure 3. In this way, the display (Figure 2) is “embed-
ded” in the user-model, and we can prudently continue
the analysis without having to consider the interface
separately.

To summarize, what is being removed from the in-
terface, user-manual, and consequently from the user’s
awareness is the automated internal transitions that take
place within each mode, or gear. For example, the LOW
mode has three possible internal states, L1, L2, L3.
When the user first up-shifts manually into LOW gear, L1
is the active state until a certain combination of throt-
tle, engine, and speed is reached. At this point there is
an automatic transition to L2. This internal transition is
not evident to the driver-user, who is aware only of be-
ing in LOW. The question is how much of the internal in-
formation must be presented to the user in order to be
able to operate the machine correctly?

Evaluation Of Interfaces

Now let us evaluate the user-model described in Figure 3.
This suggested user model is a very simple one and
seems intuitively clear: The display shows only the three
modes (LOW, MEDIUM, and HIGH). All the internal states
of the machine are removed and all the automatic (inter-
nal) transitions are suppressed.

Is this a good interface?

Figure 3. User model. Figure 4. Alternate User model

Let us look at it more carefully. The manual shifts from
MEDIUM up to HIGH or down to LOW, as well as the down-
shift from HIGH to MEDIUM, are always predictable – the
user will be able to anticipate the next mode of the ma-
chine. However, the up-shift from the LOW gear depends
on the internal state: up-shifts from L1 and L2 transition
to MEDIUM mode, while the up-shift from L3 switches the
transmission to the HIGH mode. As a consequence, the
user will not be able to predict whether the up-shift will
lead the transmission from LOW to MEDIUM, or from LOW
to HIGH. We therefore must conclude that this user-model
(and display) are not adequate for the task.

An alternate user-model that may remedy the above
problem is depicted in Figure 4. This modified display
shows two LOW modes (LOW-1, LOW-2). The user-manual
further explains that the transitions between LOW-1 and
LOW-2 occur automatically. The user is told that upon up-
shift from LOW-1, the system transitions to MEDIUM,
while on upshift from LOW-2, the system goes to HIGH.

Formal Verification Of Interfaces

Again, we ask: is this a good interface?
Well, by intuitive inspection it seems quite reason-

able—we have taken care of the problem with the man-
ual up-shift from LOW. But let us apply the verification
methodology that was mentioned earlier to confirm it
formally. The algorithmic details of this verification
methodology and its application to an automated flight
control system are provided elsewhere (Degani et al
2002). Here, we will give a brief synopsis of the method-
ology in the context of the transmission example.

The objective of the verification methodology is to
determine whether a given user model (and interface)
enable the user to operate the machine correctly. The es-
sence of the procedure is to check whether the user
model “marches” in synchronization with the machine

HCI-Aero 2002 121

model. This is determined by creating a composite
model of the user- and machine-models (see Figure 5).

We assert that a user-model is correct if there exist
no error states, no blocking states, and no augmenting
states in the composite model. An error state represents
a divergence between the machine and user-models.
That is, the interface tells the user that the machine is
in one mode when in fact the machine is in another. A
blocking state represents a situation in which the user
can in fact trigger a transition from one mode to an-
other, yet this information is not provided to the user
(and when the transition happens, the user is surprised).
An augmenting state is a situation in which the user is
told that a certain mode change is possible, when in
fact it may be the case that the machine will not switch
into this mode or sub-mode.

Let us apply this methodology to verify whether the
alternative user-model of Figure 4 is correct. The ma-
chine (of Figure 1) starts in state L1 and the user-model
(of Figure 4) starts in LOW-1. So the first composite
state is “L1, LOW-1.” Upon an automatic up-shift transi-
tion (event d), the machine transitions to L2 and the
user model to LOW-2. Now we are in composite state
“L2, LOW-2.” Another automatic up-shift (event d) and
we are in “L3, LOW-2.” Now if the user pushes the up
shift-lever (event b) the machine transitions to H1 and
the user model also goes to HIGH, and everything is
okay. The user-model runs in complete synchronization
with the machine model.

Figure 5. Composite model of the alternative user model.

Recall that the user-model is aimed at enabling the op-
erator to determine unambiguously which speed-mode
the transmission is in, or is about to enter. With this
mind, look at the following sequence: we start as before
in “L1, LOW-1”. Automatic up-shift (event d) takes
place and now we are in the composite state “L2, LOW-
2.” The user now decides to use the manual up-shift
gear. The machine (according to Figure 1) will transi-
tion to state M1, yet according to the user-model of
Figure 4, we are now in HIGH mode. The new composite
state is “M1, HIGH.” This, of course, is a contradiction!

The user thinks he is in HIGH mode where in fact the un-
derlying machine is in MEDIUM (state M1). The resulting
ambiguity is a classical mode error (Norman 1983). We
therefore must conclude that the user model of Figure 4
is also incorrect and work on finding another alternative.

It is of course possible to concoct other user-models
and then iteratively employ the verification procedure to
determine their correctness. However, such an effort is
not likely to be very efficient: it may take considerable
effort to develop and verify one design after another, with
no guarantee of success. Furthermore, even when a cor-
rect interface is identified, there is no assurance that it is
the simplest possible; there could be an equally good, or
even better abstraction, hiding just around the corner. The
development of a systematic approach for constructing
interfaces that are both correct and succinct is the sub-
ject of the next section.

Machine Model Reduction
As mentioned in the Introduction, one possible choice of
user-model is to display all the internal states of the ma-
chine. This will insure that there is never any problem in
predicting the next state of the machine. And therefore
there will never be an error state. But the display size
will be unimaginably large, the user manuals weigh tons,
and the human operator overwhelmed.

So our objective becomes clearer: to generate the
best possible user-models and interfaces that will allow
the operator to perform tasks safely. By best user models
and interfaces we mean ones that cannot be further re-
duced and simplified. To accomplish this, we take the
machine model of Figure 1 and reduce it systematically
with reference to the task requirements.

The proposed reduction procedure, which computes
all possible irreducible user-models, is a formal mathe-
matical process that consists of several computational
steps. In the first step, compatible sets of internal states
are computed. These are sets of states that, in principle,
can be grouped together to form super states. These su-
per-states have the property that individual state inside
them need not be distinguished by the user. The sets of
compatible states are successively enlarged until maxi-
mal compatible sets are obtained that cannot be further
enlarged.

The second computational step consists of selecting a
suitable subset of the set of maximal compatibles that
can form a state set of a reduced model. This selection
process is generally not unique, and there may be more
than one choice. Each choice will yield a different user-
model and interface. The ultimate choice must be based
on engineering and human-factors considerations of the
designers. Finally, the last step consists of constructing
the abstracted user-model and interface (that are associ-
ated with a particular choice).

In the next sub-sections we shall describe in some de-
tail how the computation of reducing the machine model
is carried out. We re-emphasize that the computation is
formal and rather technical. The reader who is not inter-

122 HCI-Aero 2002

ested in learning the detailed computational steps, may
wish (at least on first reading) to skip to the next sec-
tion and see the results of the formal computation and
how the new user-model (and interface) are constructed.

Compatible States
We mentioned earlier that the user-model must enable
us to operate the system correctly with respect to the
user’s task(s). In our example, the user-model must al-
low the operator to track the machine as it switches
from one mode to another. But we have already learned
there is no requirement that the user track every internal
state of the machine. There is no need for us to distin-
guish between two internal states (say M1 and M2 of
mode MEDIUM), if, after following any given event se-
quence, we end up in the same mode (e.g., HIGH,
MEDIUM or LOW), regardless of which of the two states
we started in. If that’s the case, we say that the two
states (M1 and M2) are compatible. Two compatible
states can be grouped together in the abstracted model--
there is no need to distinguish between M1 and M2 in
the interface.

Trying to find state pairs that are compatible is diffi-
cult, instead let’s turn our attention to state-pairs that
are incompatible. If we can compute all incompatible
pairs (that cannot be grouped together), the remaining
pairs must be compatible. Incompatible pairs are, for
example, two states that belong to two distinct modes.
Thus, the state-pair L1 and H3 is incompatible: L1 be-
longs to mode LOW and H3 belongs to mode HIGH. We
must never group them together on the display; for oth-
erwise we create an error-state. Another reason for
deeming a pair of states incompatible is if a transition
out of one of the states and the same transition out of
the other, lead us, respectively to two states of a pair
that was already deemed incompatible.

Identifying Compatible Pairs
Now we proceed to identify all the compatible (and in-
compatible) pairs in the machine model. Once we iden-
tify compatibles, we can group them together, abstract
them, and ultimately reduce the display complexity.
See (Kohavi 1978, Paull et al 1959) where related
model reduction procedures are discussed.

Using the above observations regarding compatible
and incompatible pairs, we proceed as follows to create
the initial resolution.

1. For each state pair (e.g., L1 and H3) that can be
immediately determined as incompatible (because
they belong to two distinct modes – LOW and
HIGH), we mark the corresponding cell I (for In-
compatible).

2. For all other state-pairs, we write in their cells the
next transition pair. For example, for the state pair
(M1,M2) the next transition pair, after initiating the
common event b, is (H1,H2).

Figure 6. Initial resolution.

Initial Resolution
Figure 6 shows a table of all possible state-pairs for the
transmission system (there are 28 such pairs), as well as
the initial resolution. To explain how we get this initial
resolution let’s start at the top (the machine model is
provided so that the reader can follow the process): The
state pair (L1, L2), transitioned on automatic up-shift d
to the pair (L2, L3). And that’s what we write inside the
top cell. The state pair (L1, L3) transitions into (M1,H1)
on manual up-shift b. However, from (L2, L3) there are
two possible transitions: automatic down-shift g takes us
to (L1,L2), and manual up-shift b takes us to (M1,H1).
So we place these two transition pairs in the cell of L2
and L3. (M1,M2) takes us to (H1, H2) on manual up-shift
b (in the table we write the triggering event as a sub-
script for the reader’s convenience). And so on. Notice,
however, that the cell H1,H3 is empty. This is because it
is neither incompatible nor it has associated transition
pairs.

Second Step
We now continue with the reduction process. But from
this step onward, we do not need to refer to the machine
model anymore. We simply start substituting values in
the cells according to the following procedure:

1. Cells that are incompatible stay that way (I). Every
cell that has not yet been determined as I in Figure
6 (e.g., L1,L3) is updated as follows: If a cell in-
cludes a transition pair (e.g., M1,H1) that has al-
ready been determined to be incompatible (I), then
the harboring cell is also denoted I (see Figure 7).

2. Otherwise, the cell is modified as follows: Each tran-
sition pair in the cell is replaced by all the transition
pairs that appeared in their original cell. For exam-
ple, the cell of (L1,L2) contains the transition pair

HCI-Aero 2002 123

(L2,L3)b. We look into cell (L2,L3) and find in
there the state-pairs (L2,L3)g and (M1,H1)b. We
place them in (L1,L2).

Figure 7. Second reduction step.

Figure 7 shows the table after the completion of the
second step. First, we replaced the transition pairs in the
cell (L1,L2) by those in the cell (L2,L3). The cells
(L1,L3) and (L2,L3) were denoted as I because their
cells include incompatible pairs. The remaining unde-
cided state pairs (those that have not yet been given the
value I) were modified according to the above proce-
dure. For example, in the cell (M1,M2) we placed the
transition pair (H2,H3)d.

Third Step
In the third step the table shown in Figure 8 is obtained.
Here cell (L1,L2) is marked I because one of the transi-
tion pair inside it--(M1,H1)b--is incompatible. The re-
maining undecided cells are modified as specified by
the procedure.

Fourth Step
In this step we realize that no additional incompatible
pairs are identified, and the table remains identical to
that of Figure 8. At this point, no further iterations will
ever produce an I. Therefore, all the undecided cells are
marked C (for compatible) as in Figure 9. This con-
cludes the resolution procedure and the determination of
all incompatible and compatible pairs.

Computing all Compatible Sets
Following the computation of all compatible pairs, we
must compute all compatible triples, quadruples, etc.,
until no new compatibles are found. The computation is
based on the observation that a set of states is compati-
ble if all its constituent pairs are compatible (Heymann

et al. 2002). This means that a state triple is compatible
if its three constituent pairs are compatible, a state quad-
ruple is compatible is its four constituent triples are com-
patible, and so on.

Figure 8. Third reduction step.

Figure 9. Completed reduction table.

Creating the User-Model
Not every compatible set is a good candidate of a suc-
cinct user model. If a compatible set is contained within
a bigger compatible set, we might as well choose the
bigger one as a better candidate. Thus, we are actually
interested only in the maximal compatibles that are not
contained in any bigger compatible set. In general, there
are many maximals. To create a base state-set for a re-
duced model, we must choose from the set of maximal
compatibles judiciously. We must insure that our selec-
tion is such that each state of the machine model is rep-
resented in at least one of the selected maximal com-
patibles. But we do not want redundancy. In particular,
we do not want to be able to eliminate any maximal
compatible from our selection without destroying the full
representation requirement. Such a set of maximal com-
patibles is called a minimal cover. Thus, a minimal
cover of maximal compatibles, forms a set of states for
an efficient user-model.

124 HCI-Aero 2002

Constructing the Interface

Figure 9 shows that the compatible pairs (C) consists of
the two internal states in MEDIUM mode (M1,M2) as
well as all the possible state-pairs in HIGH ((H1,H2),
(H1,H3), and (H2,H3)). The results tell us that we do
not need to display the two internals states in MEDIUM,
and none of the three internal states in HIGH. And what
about LOW mode? Since L1, L2 and L3 do not appear in
any compatible pairs, we have no choice but to display
them to the user. Figure 10 is our best (i.e., minimal)
user-model possible for the machine of Figure 1.

Figure 10. The reduced user model.

Conclusions

The problem of incorrect and overly complex interfaces
has plagued the design of human-automation interac-
tion, and still does. Such design problems are responsi-
ble, in part, for what has been termed “automation sur-
prises” (Woods 1997). Such surprises occur when pilots
have difficulty understanding the current status of an
automatic system as well as the consequences of their
interactions with it (Degani et al 1999).

In this paper we have shown a methodology and an
algorithmic procedure for constructing user-models and
interfaces. We have focused on the information content
of the display and not on the graphical user interface.
Two objectives have guided us in developing the meth-
odology: (1) that the interfaces and user-models be cor-
rect; (2) that they be as simple as possible.

This paper has presented the flavor of our approach
to constructing correct and succinct user interfaces, and
by use of the transmission example illustrated the itera-
tive reduction process, which is at the heart of the
methodology. The reader is encouraged to refer to
(Heymann et al 2002) for more details.

The methodology presented here deals with discrete-
event systems (those that have states and modes). How-
ever, the approach is general and therefore amenable to
other type of representations. It remains an interesting
topic of future research to expand this approach to sys-
tems that have both continuous and discrete events (hy-
brid systems) as well as timed systems. And indeed,
promising results in verification of a complex hybrid
system (an autoland system of a commercial airliner),
have already been obtained.

References

Aviation Safety Reporting System. 1998. FMC altitude
capture function reports. Search Request No. 5183. Moun-
tain View, CA: Battelle Memorial Institute.

Aviation Week and Space Technology. 2001. Airbus A-
330 Fuel System: How It Works and Pilot Choices
(March 12, 2001), 34-37.

Degani, A., Shafto, M., and Kirlik, A. 1999. Modes in
Human-Machine Systems: Constructs, representation,
and classification. International Journal of Aviation Psy-
chology, 9(2), 125-138.

Degani, A. and Heymann, M. 2002. Formal Verification
of Human-Automation Interaction. Human Factors.

Heymann M., and Degani A. 2002. On abstractions and
simplifications in the design of human-automation inter-
faces. NASA Technical Memorandum 2002-211397. Mof-
fett Field, CA. (http://ic.arc.nasa.gov/publications/number
.html).

Indian Court of Inquiry. 1992. Report on accident to In-
dian Airlines Airbus A-320 aircraft VT-EPN at Bangalore
on 14th February, 1990. Indian Government.

Kohavi, Z. 1978. Switching and Finite Automata Theory.
New York: McGraw-Hill.

National Transportation Safety Board. 1997. Wheels-Up
Landing of Continental Airlines Flight 1943, Douglas
DC-9 N10556, Houston, Texas, on February 19, 1996.
(Report Number: AAR-97-01). Washington DC: NTSB.

Norman, D. A. 1983. Design rules based on analysis of
human error. Communications of the ACM, 26(4), 254-
258.

Parasuraman, R., Sheridan, T.B., and Wickens, C.D.
2000. A model for the types and levels of human interac-
tion with automation. IEEE Transaction on Systems,
Man, and Cybernetics – Part A: Systems and Humans,
30(3), 286-297.

Paull, M.C. and Unger, S.H. 1959. Minimizing the num-
ber of states in incompletely specified sequential switch-
ing functions. Institute of Radio Engineers Transactions
on Electronic Computers, 356-367.

Vakil, S., Hansman, R. J., Midkiff, A. H., and Vaneck, T.
1995. Mode awareness in advanced autoflight systems. In
T. B. Sheridan (Ed.), Proceeding of the International
Federation of Automatic Control; Man-Machine Systems
(IFAC-MMS) Conference. Boston, MA: IFAC.

Wiener, E.L. 2002. Personal communication, April 5.

Woods, D., Sarter, N., and Billings, C. 1997. Automation
surprises. In G. Salvendy (Ed.), Handbook of human fac-
tors and ergonomics (1926-1943). New York: John Wiley.

HCI-Aero 2002 125

